
(PSI∗)

feuille d’exercices sur les espaces vectoriels.

1. Parmi ces ensembles, préciser ceux qui sont des espaces vectoriels et ceux qui n’en sont pas :

a) A = {M ∈Mn(R)/M.X0 = 0}, où X0 =


1
0
...
0



b) B = {M ∈Mn(R)/M.X0 = X0}, où X0 =


1
0
...
0


c) C = {M ∈Mn(R)/det(M) = 0},
d) soit D = {M ∈Mn(R)/ t(X1)M.X0 = 0}, où X0 et X1 sont deux vecteurs non nuls de Rn,

e) E = {(un) ∈ RN/(un)n∈N est une suite croissante},
f) F = {(un) ∈ RN/(un) est une suite monotone},

g) soit G =
{

(un) ∈ RN/ lim
n→∞

(un
n2

)
= 0
}

,

h) soit (vn) ∈ RN, H = {(un) ∈ RN/(un).(vn) = (0)n∈N},
i) I = {(x, y, z) ∈ R3/2x2 + 3y2 − z2 + 5xy + xz + 2yz = 0}

2. Soit E l’ensemble des applications f : [−1, 1]→ R continues telles que les restrictions f |[−1,0] et f |[0,1]
soient affines.

1. Montrer que E est un R-espace vectoriel.

2. Donner une base de E.

3. Dans R3 muni de sa base canonique, on considère la droite D d’équation x =
y

2
=

z

3
et le plan P

d’équation x+ y + z = 0.

1. Montrer que R3 = D ⊕ P .

2. Donner la matrice dans la base canonique de la projection sur P parallèlement à D.

4. Soit A un sous-espace vectoriel de dimension finie de C0(R) stable par produit.

1. Soit f ∈ A non constante. Montrer que f prend une infinité de valeurs distinctes.

2. Montrer que la famille des fonctions (fk)k∈N est libre.

3. Conclusion ?

5. Soit E un K-espace vectoriel de dimension 3 et f un endomorphisme de E. Montrer que rg(f3) = rg(f4).
Montrer que l’on peut généraliser le résultat, c’est-à-dire que si f est un endomorphisme d’un K-espace
vectoriel de dimension finie p alors rg(fp) = rg(fp+1)

6. Soit E un espace vectoriel de dimension finie et u ∈ L(E) tel que rg u = rg u2.
Montrer que E = Imu⊕Keru.

7. Soit n ∈ N, E un espace vectoriel de dimension finie n sur un corps K et u et v deux endomorphismes
de E tels que u ◦ v = 0 et que u+ v soit inversible. Montrer que rg u+ rg v = n.

8. Dans R4 on considère : a = (1, 2, 3, 4), b = (2, 2, 2, 6), c = (0, 2, 4, 4), d = (1, 0,−1, 2) et e = (2, 3, 0, 1).
On pose F = Vect{a, b, c} et G = Vect{d, e}. Calculer les dimensions de chacun des sous-espaces F , G,
F ∩G et F +G et donner une base pour chacun d’eux.

9. Soit E un K-espace vectoriel, f et g deux endomorphismes de E.

1. Montrer que, si f et g sont nilpotents et commutent, alors f + g est nilpotent.

2. Montrer les implications suivantes :

f nilpotent ⇒ Id− f inversible

fg nilpotent ⇒ gf nilpotent

(Id− fg) inversible ⇒ (Id− gf) inversible.

1/3

https://lyc-0782562l.ac-versailles.fr/pmb/le_nagae/index.html


10. On considère les trois formes linéaires sur :
f1 : (x, y, z) 7→ 2x− y + 3z, f2 : (x, y, z) 7→ 3x− 5y + z et f3 : (x, y, z) 7→ 4x− 7y + z

forment-elles une base de L(R3,R) ?

11. SoitMn(R) l’espace vectoriel des matrices carrées d’ordre n sur R. Montrer que pour toute forme linéaire
sur Mn(R) il existe une unique matrice A ∈Mn(R) telle que ∀X ∈Mn(R), f(X) = tr(AX).
Montrer que pour avoir en plus f(XY ) = f(Y X) pour couple (X,Y ) d’éléments de Mn(R) , il faut et
il suffit que A soit une matrice scalaire (c’est-à-dire de la forme : λIn).

12. 1) Soit M ∈Mn(R) tel que rgM = 1. Montrer que M2 = (trM).M . (Mines 2002)

2) Soit (A,B) ∈Mn(R)2 tels que rg(A) = rg(B) = rg(A+B) = 1.
Montrer que : tr(AB) = (trA)(trB).

13. Trouver l’unique polynôme P de degré inférieur ou égal à 3, à l’aide des polynômes d’interpolation de
Lagrange, qui vérifie :

P (0) = −1, P (2) = 1, P (−2) = 1, P (−1) = 2

14. Soit ζn,z l’ensemble des polynômes de C[X] qui admettent z pour racine d’ordre > n. (centrale 2002)

Pour tout polynôme A de C[X] tel que z ne soit pas racine de A, on note :
Mn,A =

{
AP | P ∈ C[X], degP 6 n− 1

}
.

Montrer que Mn,A et ζn,z sont supplémentaires.

15. Soit E un espace vectoriel de dimension finie sur le corps K et f , g deux endomorphismes de E tels que
Im f + Im g = Ker f + Ker g = E. Montrer que les sommes sont directes.

16. Soit V un espace vectoriel de dimension n, k un entier et V1, . . . , Vk des sous-espaces vectoriels de V tels

que

k∑
i=1

dimVi > (k − 1)n. Montrer que
k⋂

i=1

Vi 6= {0E}

17. Soit n ∈ N et A ∈Mn(R) telle que tr(A) 6= 1.
On définit l’ensemble E = {X ∈Mn(R) | X + tX = 2 tr(X)A}

1. montrer que E est un espace vectoriel.

2. Déterminer la dimension de E.

18. Soit (A,B) ∈Mn(R), résoudre dans Mn(R) : (X-Cachan 2002)

1. X = (trX)A+B

2. X + tX = (trX)A

3. tr(tXX) = trA

19. Soit l’équation X + tX = trX.A dans Mn(R). (Centrale 2005)

1. Trouver les conditions sur A pour avoir des solutions à cette équation

2. Chercher les solutions pour A =

(
1 2
3 6

)
et pour A =

(
1 2
2 1

)
3. Montrer que l’ensemble des solutions est un sous-espace vectoriel deMn(R) et trouver sa dimension.

20. Soit f ∈ L(E,F ), où E et F sont des espaces vectoriels de dimension finie. (Centrale 2005)

1. Montrer que pour tout sous espace vectoriel A de E :

dim f(A) = dimA− dim(A ∩Ker f)

2. Montrer que pour tout sous-espace vectoriel L de F :

dim f−1(L) = dimE + dim(L ∩ Im f)− rg f

21. Soit pour tout entier k de 0 à n : Pk = Xk(1−X)n−k.

1. Montrer que la famille (Pk)06k6n est une base de Rn[X].

2. Donner la décomposition de Q = dn

dXn (Xn(1−X)n) dans cette base.

3. En déduire la valeur de

n∑
k=0

(
n

k

)2

.

22. Montrer que l’application

(
R[X] → R[X]
P (X) 7→ P (X2) + (1 +X2)P (X)

)
est linéaire.

Est-elle injective ? Surjective ?
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23. Soit n ∈ N∗ et ∆ :

(
Rn[X] → Rn[X]
P 7→ P (X + 1)− P (X)

)
.

1. Montrer que ∆ ∈ L(Rn[X]) et qu’il existe p ∈ N tel que ∆p = 0.

2. En déduire pour tout P ∈ Rn−1[X] :

n∑
j=0

(−1)n−j
(
n

j

)
P (X + j) = 0.

24. Soit A =

2 2 1
1 3 1
1 2 2

.

Calculer A2 puis montrer que A2 est une combinaison linéaire de A et de I3.
En déduire A−1 puis An, où n ∈ Z.

25. Soit n ∈ N \ {0, 1}. Montrer que tout hyperplan de Mn(K) rencontre GLn(K).

26. Soit n ∈ N∗ et A ∈Mn(K) non inversible.
Montrer qu’il existe deux matrices B et C de Mn(K) telles que :

A = BC, B inversible, C nilpotente

27. Soit (n, p) ∈ (N∗)2, A ∈Mn(K), B ∈Mn,p(K) et C ∈Mp(K).

Soit M la matrice définie par blocs, égale à

(
A B
0 C

)
.

1. Montrer que M est inversible si et seulement si A et C sont inversibles.

2. Lorsque A et C sont inversibles, exprimer M−1 sous forme de blocs.

28. Soit (A,B) ∈Mn(R)
2

et ΦA,B :

(
Mn(R) → Mn(R)
M 7→ AM B

)
. (X-ENS 2023)

1. Quel est le rang de ΦA,B ?

2. Soit L : M 7→ tr(M) In. Existe-t-il un couple (A,B) ∈Mn(R)
2

tel que L = ΦA,B ?

29. Soit E un espace vectoriel de dimension finie. Soit f un automorphisme de E. (X-ENS 2023)

Montrer l’équivalence des assertions suivantes

i) Il existe F,G sous-espaces vectoriels de E tel que F ⊕G = E et

{
f(F ) ⊂ G
f(G) ⊂ F

ii) ∃(u, v) ∈ L(E) / f = u+ v et u2 = v2 = 0L(E)

30. Soit E un espace vectoriel de dimension finie n. Soit u ∈ L(E). (Centrale 2023)

1. Soit k ∈ N. Montrer que : Ker(uk) ⊂ Ker(uk+1).

2. Montrer que la suite (dim(Ker(uk)))k∈N est une suite constante à partir d’un certain rang (on note
d la constante).

3. (a) Soit p ∈ N∗. On suppose que Ker(up) = Ker(up+1).

Montrer que ∀k > p, Ker(uk) = Ker(up).

(b) Soit ku = inf{k ∈ N / dim(Ker(uk)) = d}.
Montrer que ku 6 n.

31. Soit E un C-espace vectoriel de dimension n > 1.
Soit u et v deux symétries telles que u ◦ v = −v ◦ u. (Centrale 2023)

1. Montrer que n est pair.

2. Soit F+ = Ker(u− IdE) et F− = Ker(u+ IdE).

Montrer que v(F+) = F− et v(F−) = F+.

3. Montrer l’existence d’un base B telle que

MatB(u) =

(
Ip 0
0 −In−p

)
et MatB(v) =

(
0 Ip

In−p 0

)
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