FEUILLE D'EXERCICES SUR LES ESPACES VECTORIELS EUCLIDIENS.

1. Soit $E = \{(u_n)_{n \in \mathbb{N}} \mid \sum |u_n^2| \text{ convergente } \}$. Montrer que $(u, v) \longmapsto \sum_{n \in \mathbb{N}} \overline{u_n} v_n$ définit un produit scalaire hermitien sur E.

Soit F l'ensemble des suites presque toutes nulles. Montrer que F est un sous espace vectoriel de E. Trouver F^{\perp} puis $F^{\perp \perp}$ Vérifier que $F^{\perp} \oplus F \neq E$ et $F^{\perp \perp} \neq F$.

- **2.** Soit E un espace vectoriel de dimension 3, \vec{u} un vecteur unitaire de E. On définit l'application f par $\forall \vec{x} \in E, f(x) = (\vec{u}.\vec{x}) \vec{u} + \vec{u} \wedge \vec{x}$
 - 1) Identifier la transformation et en donner les éléments caractéristiques.
 - 2) Donner la matrice représentative de la rotation autour de \vec{u} d'angle $\frac{\pi}{2}$, dans la base $(\vec{i}, \vec{\jmath}, \vec{k})$

avec
$$\vec{u} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$
 (CCP 1999)

- 3. Soit \mathcal{P} le plan d'équation x+y-2z=0, déterminer les matrices représentatives des applications linéaires suivantes dans la base canonique de \mathbb{R}^3 muni de son produit scalaire usuel:
 - p la projection orthogonale de \mathbb{R}^3 sur le plan \mathcal{P} ,
 - q la projection orthogonale de \mathbb{R}^3 sur \mathcal{P}^{\perp} ,
 - s la symétrie orthogonale de \mathbb{R}^3 par rapport à \mathcal{P} ,
- **4.** <u>Déterminant de Gram</u> Soit E un espace vectoriel euclidien muni d'un produit euclidien noté (.|.). Pour $(x_1, x_2, \dots, x_p) \in E^p$, on note $G(x_1, x_2, \dots, x_p) = \det \left(((x_i|x_j))_{1 \le i \le p, 1 \le j \le p} \right)$.
 - a) Montrer que: (x_1, x_2, \dots, x_p) est libre $\iff G(x_1, x_2, \dots, x_p) \neq 0$,
 - b) On suppose que (x_1, x_2, \dots, x_p) est une base d'un sous espace vectoriel F de E. Soit $x \in E$, soit $(y_1, y_2) \in F \times F^{\perp}/x = y_1 + y_2$. Montrer que $G(x, x_1, x_2, \dots, x_p) = ||y_2||^2 \cdot G(x_1, x_2, \dots, x_p)$.
- **5.** Soit (x_1, \dots, x_n) et (y_1, \dots, y_n) deux familles de vecteurs d'un espace vectoriel euclidien E telles que : $\forall (i,j) \in [\![1,n]\!], \ (x_i|x_j) = (y_i|y_j)$
 - comparer $\operatorname{rg}(x_1, \dots, x_n)$ et $\operatorname{rg}(y_1, \dots, y_n)$
 - Montrer qu'il existe un automorphisme orthogonal f de E tel que $\forall i \in [1, n], f(x_i) = y_i$.
- **6.** On considère $\mathbb{R}[X]$ muni du produit scalaire hermitien tel que $(1, X, \dots, X^n, \dots)$ soit une base orthonormale. Vérifier que le projecteur $u: P \longmapsto P(1)$ n'a pas d'adjoint en calculant $u^*(1).X^k$ pour tout k.
- 7. Soit E un espace vectoriel euclidien. Trouver toutes les homothéties et tous les projecteurs autoadjoints de E.
- 8. Montrer que $(P,Q) \longmapsto \int_{-1}^{1} \sqrt{\frac{1-t}{1+t}} P(t)Q(t) dt$ définit un produit scalaire sur $E = \mathbb{R}_n[X]$. Trouver l'adjoint de $u \in \mathcal{L}(E)$, où, $u : P \longmapsto (X^2 - 1)P'' + (2X + 1)P'$.
- 9. Dans $E = \mathcal{M}_{p,q}(\mathbb{R})$, montrer que l'application qui $(X,Y) \longmapsto \operatorname{tr}({}^tXY)$ définie sur $E \times E$ est un produit scalaire sur E.
 - 1) Soit $A \in \mathcal{M}_p(\mathbb{R})$ et $B \in \mathcal{M}_q(\mathbb{R})$ et $f: \begin{pmatrix} E & \longrightarrow & E \\ X & \longmapsto & AX XB \end{pmatrix}$. Trouver l'adjoint de f.
 - 2) dans le cas où p=q et pour S le sous-espace vectoriel des matrices symétriques réelles, trouver S^{\perp} .
- **10.** Soit E un espace vectoriel euclidien de dimension finie et $f \in \mathcal{L}(E)$, tell que $f^* \circ f = f \circ f^*$ (où f^* est l'adjoint de f). Montrer que Ker f et Im f sont supplémentaires.

- 11. Soir E un espace préhilbertien réel, p et q deux projecteurs orthogonaux de E.
 - 1) Montrer l'équivalence des propositions suivantes :
 - (1) pq est un projecteur orthogonal.
 - (2) pq = qp
 - 2) Si pq est un projecteur orthogonal, montrer que:

$$\operatorname{Im}(pq) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$$
 et que $\operatorname{Ker}(pq) = \operatorname{Ker}(p) + \operatorname{Ker}(q)$.

- 3) Montrer l'équivalence des propositions suivantes:
 - (3) p + q pq est un projecteur orthogonal.
 - (2) pq = qp
- 4) Si p+q-qp est projecteur orthogonal, montrer que: $\operatorname{Im}(p+q-qp)=\operatorname{Im} p+\operatorname{Im} q$
- 12. Soit E l'espace vectoriel des fonctions continues, 2π -périodiques de \mathbb{R} dans \mathbb{C} .
 - Vérifier que $(f,g) \longmapsto \frac{1}{2\pi} \int_{[0,2\pi]} \overline{f}g$ est une produit scalaire hermitien sur E,
 - Pour tout $k \in \mathbb{Z}$, on définit $e_k \in E$ par $e_k : x \longmapsto e^{ikx}$.

Vérifier que $(e_k)_{k\in\mathbb{Z}}$ est une famille orthonormale.

- Pour tout $n, \in \mathbb{N}$, on pose $F_n = \text{Vect}\{e_k \mid k \in \llbracket -n, n \rrbracket \}$. Trouver la projection orthogonale de $f \in E$ sur F_n
- 13. Si A est une matrice symétrique positive, c'est à dire si $\forall X \in \mathcal{M}_{n,1}(R)$, ${}^tX.A.X \ge 0$, montrer l'existence d'une unique matrice symétrique positive H telle que $H^2 = A$ (H est appelée une racine carrée de A).
- 14. polynômes de Legendre

Soit
$$E = \mathbb{C}^0([-1,1],\mathbb{R})$$
 muni du produit scalaire $(f \mid g) = \int_{-1}^1 fg$.

- Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes vérifiant :
 - (1) $\forall n \in \mathbb{N}, \deg P_n = n$

$$(2) \ \forall (i,j) \in \mathbb{N}^2, i \neq j \Rightarrow (P_i \mid P_j) = 0,$$

- Soit $n \in \mathbb{N}^*$, montrer que P_n a au moins une racine réelle sur]-1,1[.
- On appelle $\alpha_1, \ldots, \alpha_p$ les racines réelles distinctes de P_n appartenant à]-1,1[et en lesquelles P_n change de signe. En considérant le produit scalaire de P_n avec $(X-\alpha_1)(X-\alpha_2)\ldots(X-\alpha_p)$ montrer que p=n.
- Montrer qu'il existe une unique suite $(L_n)_{n\in\mathbb{N}}$ de polynômes vérifiant :
 - (1) $\forall n \in \mathbb{N}, \deg L_n = n$
 - $(2) \ \forall (i,j) \in \mathbb{N}^2, \ i \neq j \Rightarrow (L_i \mid L_j) = 0$
 - (3) $\forall n \in \mathbb{N}, L_n(1) = 1.$
- Montrer que, pour tout $n \in \mathbb{N}$, fixé, il existe Q unique dans $\mathbb{R}[X]$ tel que:

$$\deg Q = 2n$$

$$(X-1)^n \text{ divise } Q$$

$$L_n = Q^{(n)}$$

- Montrer que $\forall i \in [0, n-1], (L_n \mid X^i) = 0$ et en déduire que $(X+1)^n$ divise Q.
- Montrer qu'il existe $\mu \in \mathbb{R}$ tel que $Q = \mu (X^2 1)^n$.
- Montrer que $\mu = \frac{2^{-n}}{n!}$
- 15. Chercher les extrema de $\frac{(x+y+z)^2+(x+y)^2+x^2}{x^2+y^2+z^2}$

- 16. Montrer que la fonction $u(x,y) = x^2 + y^2$ admet des extremums que l'on précisera quand x et y vérifient $3x^2 - 2xy + 5y^2 = 1.$
- 17. On considère Φ l'application bilinéaire de $\mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$, avec $\Phi(P,Q) = \int_{-1}^1 t P(t) Q(t) dt$. On considère le produit scalaire: $\langle P \mid Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$.
 - 1) Montrer qu'il existe φ_n un endomorphisme de $\mathbb{R}_n[X]$ tel que $\forall P \in \mathbb{R}_n[X], \ \Phi(P,Q) = \langle P \mid \varphi_n(Q) \rangle$
 - 2) Diagonaliser φ_2 .
- 1) Montrer que $\int_{a}^{1} P(t)Q(t)dt$ définit un produit scalaire sur $E = \mathbb{R}_{2}[X]$. 18.
 - 2) Trouver (P_0, P_1, P_2) une base du produit scalaire (avec maple)
 - 3) Soit $b:(P,Q)\mapsto \int_0^1 tP(t)Q(t)dt$. bilinéarité?
 - 4) Montrer qu'il existe un endomorphisme de E tel que $b(P,Q) = (f(P) \mid Q), \forall (P,Q)$
 - **5)** ...? (Centrale 2001)
- 19. Soit E un espace euclidien orienté de dimension 3. Soit f une rotation d'angle θ d'axe D.
 - **1.** Montrer que $\exists Q \in \mathbb{R}_3[X] / Q(f) = 0$ et Q(0) = 1.
 - **2.** Montrer que $\exists R \in \mathbb{R}_2[X] / f^* = R(f)$.
 - **3.** Montrer que $\exists T \in \mathbb{R}_2[X] / \Pi = T(f)$ avec Π : projection orthogonale d'axe D. (Centrale 2001)
- **20.** Soit E un espace vectoriel euclidien de dimension $n \ge 2$. Soient \vec{a} et \vec{b} deux vecteurs de E non nuls et orthogonaux. On considère: $\forall \vec{x} \in E, f(\vec{x}) = (\vec{a}.\vec{x})\vec{b} + (\vec{b}.\vec{x})\vec{a}$.
 - a) Vérifier que f est un endomorphisme de E. Trouver son noyau et son image.
 - **b)** On note f^* l'adjoint de f. Quelle relation vérifient f et f^* ?
 - c) En considérant une base orthonormée appropriée de E, trouver |||f|||. (on rappelle que $|||f||| = \sup (\{||f(\vec{x}||, \forall \vec{x}, ||x|| = 1\}).$
 - d) Soit $\vec{x} \in E$, $g(\vec{x}) = (\vec{a} \cdot \vec{x})\vec{b} (\vec{b} \cdot \vec{x})\vec{a}$. Vérifier que f est un endomorphisme de E. Trouver son noyau et son image.
 - e) Trouver |||g|||
 - **f**) (en supplément) que vaut g^* ? Trouver $\vec{x} \in E \mid \forall \vec{x} \in E, g(\vec{x}) = \vec{v} \land \vec{x}$. (Centrale 2001)
- **21. a)** Soit l'application $\begin{pmatrix} M_n(\mathbb{R}) \times M_n(\mathbb{R}) & \to & \mathbb{R} \\ (A,B) & \mapsto & \operatorname{tr}({}^tA.B) \end{pmatrix}$. Montrer qu'elle définit un produit scalaire euclidien. Soit $A \in S_n(\mathbb{R})$ où $S_n(\mathbb{R})$ représente les matrices réelles symétriques d'ordre n. On pose $A = (a_{i,j})$ et

 $(\lambda_1, \ldots, \lambda_n)$ ses n valeurs propres (pas forcément toutes distinctes). Montrer l'égalité:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}$$

Soit $A \in S_n(\mathbb{R})$ et $M \in M_n(\mathbb{R})$, calculer $d(M) = \inf_{A \in S_n(\mathbb{R})} \left(\sum_{i=1}^n \sum_{j=1}^n (m_{i,j} - a_{i,j})^2 \right)$

- **b)** Soit P définit par $P = \left\{ M \in M_n(\mathbb{R}) \mid m_{i,j} \ge 0 \text{ et } \sum_{i=1}^n m_{i,j} = 1 \right\}$
 - 1. P est-il compact?
 - 2. Montrer que P est stable par la multiplication matricielle.
 - $\forall M \in P, \operatorname{sp}_{\mathbb{C}}(P) \subset D_F(0,1)$ 3. Montrer que:
- **22.** Soit $B \in M_n(\mathbb{R})$ symétrique positive, $U \in O_n(\mathbb{R})$. Montrer que $\operatorname{tr}(UB) \leqslant \operatorname{tr} B, \ \forall U \in O_n(\mathbb{R})$. (TPE 2001) 3. 3e Nagard - exo_esp._vect._euclid(1) (composé avec TeX le 24/10/2003)