FEUILLE D'EXERCICES SUR LES ESPACES VECTORIELS EUCLIDIENS.

1. Soit $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \sum u_n^2 \text{ convergente } \}$. Montrer que $(u, v) \longmapsto \sum_{n \in \mathbb{N}} u_n v_n$ définit un produit scalaire sur E.

Soit F l'ensemble des suites « nulles presque partout ». Montrer que F est un sous espace vectoriel de E. Trouver F^{\perp} puis $F^{\perp \perp}$ Vérifier que $F^{\perp} \oplus F \neq E$ et $F^{\perp \perp} \neq F$.

- 2. Soit E un espace vectoriel de dimension 3, \vec{u} un vecteur unitaire de E. On définit l'application f par $\forall \vec{x} \in E, \ f(\vec{x}) = (\vec{u}.\vec{x}) \, \vec{u} + \vec{u} \wedge \vec{x}.$
 - 1. Identifier la transformation et en donner les éléments caractéristiques.
 - 2. Donner la matrice représentative de la rotation autour de \vec{u} d'angle $\frac{\pi}{2}$, dans la base $(\vec{\imath}, \vec{\jmath}, \vec{k})$

$$\text{avec } \vec{u} \ = \ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

- 3. Soit \mathcal{P} le plan d'équation x+y-2z=0, déterminer les matrices représentatives des applications linéaires suivantes dans la base canonique de \mathbb{R}^3 muni de son produit scalaire usuel :
 - 1. p la projection orthogonale de \mathbb{R}^3 sur le plan \mathcal{P} ,
 - 2. q la projection orthogonale de \mathbb{R}^3 sur \mathcal{P}^{\perp} ,
 - 3. s la symétrie orthogonale de \mathbb{R}^3 par rapport à \mathcal{P} .
- 4. Déterminant de Gram Soit E un espace vectoriel euclidien muni d'un produit scalaire noté (.|.).

Pour
$$(x_1, x_2, \dots, x_p) \in E^p$$
, on note $G(x_1, x_2, \dots, x_p) = \det \left(\left((x_i | x_j) \right)_{1 \leqslant i \leqslant p, 1 \leqslant j \leqslant p} \right)$.

- 1. Montrer que : (x_1, x_2, \dots, x_p) est libre $\iff G(x_1, x_2, \dots, x_p) \neq 0$,
- 2. On suppose que (x_1, x_2, \dots, x_p) est une base d'un sous espace vectoriel F de E.

Soit
$$x \in E$$
, soit $(y_1, y_2) \in F \times F^{\perp}/x = y_1 + y_2$.

Montrer que
$$G(x, x_1, x_2, \dots, x_p) = ||y_2||^2 \cdot G(x_1, x_2, \dots, x_p)$$
.

- **5.** Soit (x_1, \dots, x_n) et (y_1, \dots, y_n) deux familles de vecteurs d'un espace vectoriel euclidien E telles que : $\forall (i,j) \in [1,n], (x_i|x_j) = (y_i|y_j)$
 - 1. comparer $\operatorname{rg}(x_1, \dots, x_n)$ et $\operatorname{rg}(y_1, \dots, y_n)$,
 - 2. Montrer qu'il existe un automorphisme orthogonal f de E tel que $\forall i \in [1, n], f(x_i) = y_i$.
- 6. Soir E un espace préhilbertien réel, p et q deux projecteurs orthogonaux de E.
 - 1. Montrer l'équivalence des propositions suivantes :
 - (1) pq est un projecteur orthogonal
 - (2) pq = qp
 - 2. Si pq est un projecteur orthogonal, montrer que :

$$\operatorname{Im}(pq) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$$
 et que $\operatorname{Ker}(pq) = \operatorname{Ker}(p) + \operatorname{Ker}(q)$.

- 3. Montrer l'équivalence des propositions suivantes :
 - (3) p + q pq est un projecteur orthogonal
 - (2) pq = qp
- 4. Si p+q-qp est projecteur orthogonal, montrer que : $\operatorname{Im}(p+q-qp)=\operatorname{Im} p+\operatorname{Im} q$
- 7. Soit $n \in \mathbb{N}^*$ et $F = \{ P \in \mathbb{R}_n[X] / \int_0^1 P(t) dt = 0 \}$.

(Centrale 2014)

- 1. Montrer que F est un hyperplan vectoriel de $(\mathbb{R}_n[X], +, .)$.
- 2. Donner un projecteur de $\mathbb{R}_n[X]$ sur $\mathbb{R}_0[X]$ parallèlement à F.
- 3. Donner un produit scalaire tel que cette projection soit orthogonale.

8. polynômes de Legendre

Soit
$$E = \mathbb{C}^0([-1,1],\mathbb{R})$$
 muni du produit scalaire $(f \mid g) = \int_{-1}^1 fg$.

- 1. Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes vérifiant :
 - $(1) \ \forall n \in \mathbb{N}, \deg P_n = n$
 - $(2) \ \forall (i,j) \in \mathbb{N}^2, i \neq j \Rightarrow (P_i \mid P_i) = 0,$
- 2. Soit $n \in \mathbb{N}^*$, montrer que P_n a au moins une racine réelle sur]-1,1[.
- 3. On appelle $\alpha_1, \ldots, \alpha_p$ les racines réelles distinctes de P_n appartenant à]-1,1[et en lesquelles P_n change de signe. En considérant le produit scalaire de P_n avec $(X-\alpha_1)(X-\alpha_2)\ldots(X-\alpha_p)$ montrer que p=n.
- 4. Montrer qu'il existe une unique suite $(L_n)_{n\in\mathbb{N}}$ de polynômes vérifiant :
 - (1) $\forall n \in \mathbb{N}, \deg L_n = n$
 - $(2) \ \forall (i,j) \in \mathbb{N}^2, \ i \neq j \Rightarrow (L_i \mid L_j) = 0$
 - (3) $\forall n \in \mathbb{N}, L_n(1) = 1.$
- 5. Montrer que, pour tout $n \in \mathbb{N}$, fixé, il existe Q unique dans $\mathbb{R}[X]$ tel que :

$$\deg Q = 2n$$
$$(X-1)^n \text{ divise } Q$$
$$L_n = Q^{(n)}$$

- 6. Montrer que $\forall i \in [0, n-1]$, $(L_n \mid X^i) = 0$ et en déduire que $(X+1)^n$ divise Q.
- 7. Montrer qu'il existe $\mu \in \mathbb{R}$ tel que $Q = \mu (X^2 1)^n$.
- 8. Montrer que $\mu = \frac{2^{-n}}{n!}$
- 9. On considère Φ l'application bilinéaire de $\mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$, avec $\Phi(P,Q) = \int_{-1}^1 t P(t) Q(t) dt$. On considère le produit scalaire : $\langle P \mid Q \rangle = \int_{-1}^1 P(t) Q(t) dt$.
 - 1. Montrer qu'il existe φ_n un endomorphisme de $\mathbb{R}_n[X]$ tel que $\forall P \in \mathbb{R}_n[X], \ \Phi(P,Q) = \langle P \mid \varphi_n(Q) \rangle$
 - 2. Diagonaliser φ_2 .
- 10. Soit E un espace euclidien orienté de dimension 3. Soit f une rotation d'angle θ d'axe D. (Centrale 2001)
 - 1. Montrer que $\exists Q \in \mathbb{R}_3[X] / Q(f) = 0$ et Q(0) = 1.
 - 2. Montrer que $\exists T \in \mathbb{R}_2[X] / \Pi = T(f)$ avec Π : projection orthogonale sur l'axe D.
- **11. a)** Soit l'application $\binom{\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})}{(A,B)} \mapsto \operatorname{tr}({}^tA.B)$.

 Montrer qu'elle définit un produit scalaire euclidien.

Soit $A \in \mathcal{S}_n(\mathbb{R})$ où $\mathcal{S}_n(\mathbb{R})$ représente les matrices réelles symétriques d'ordre n. On pose $A = (a_{i,j})$ et $(\lambda_1, \ldots, \lambda_n)$ ses n valeurs propres (pas forcément toutes distinctes). Montrer l'égalité :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}$$

Soit $M \in \mathcal{M}_n(\mathbb{R})$, calculer $d(M) = \inf_{A \in \mathcal{S}_n(\mathbb{R})} \left(\sum_{i=1}^n \sum_{j=1}^n (m_{i,j} - a_{i,j})^2 \right)$

- **b)** Soit P définit par $P = \left\{ M \in \mathcal{M}_n(\mathbb{R}) \mid m_{i,j} \geq 0 \text{ et } \sum_{i=1}^n m_{i,j} = 1, \quad \forall j \in [1,n] \right\}$
 - 1. Montrer que P est stable par la multiplication matricielle.
 - 2. Montrer que : $\forall M \in P, \text{ sp}_{\mathbb{C}}(M) \subset B_F(0,1)$

12. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$, où $\mathcal{S}_n^+(\mathbb{R})$ est l'ensemble des matrices symétriques positives.

(Centrale 2007)

- 1. Calculer te_iAe_i pour $A \in \mathcal{M}_n(\mathbb{R})$ et e_i vecteur de la base canonique de \mathbb{R}^n .
- 2. Montrer que $\forall i \in [1, n], \ u_{i,i} \geqslant 0$, pour $U = [u_{i,j}] \in \mathcal{S}_n^+(\mathbb{R})$, puis, en étudiant une forme quadratique appliquée à $\alpha e_i + e_j$, montrer que $[u_{i,i} = 0 \Rightarrow u_{i,j} = 0, \forall j]$.
- 3. Soit $U = \begin{bmatrix} A & C \\ {}^tC & B \end{bmatrix} \in \mathcal{S}_n^+(\mathbb{R})$, avec $A \in \mathcal{M}_p(\mathbb{R})$ et $B \in \mathcal{M}_q(\mathbb{R})$.

Montrer que $U' = \begin{bmatrix} A & C \\ 0 & 0 \end{bmatrix}$ est diagonalisable (étudier P(U') où P polynôme).

13. Soit M une matrice symétrique réelle.

(Centrale 2014)

- 1. Montrer l'équivalence entre les deux assertions suivantes :
 - (a) $\operatorname{Sp}(M) \subset \mathbb{R}_{+}^{*}$.
 - (b) Il existe un produit scalaire tel que : $\langle X \mid Y \rangle = {}^t X M Y$, X et Y deux vecteurs colonnes de \mathbb{R}^n .
- 2. Soit $\Phi(X,Y) = \sum_{i=1}^{n} x_i y_i \alpha \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$
 - (a) Montrer que Φ est une forme bilinéaire symétrique.
 - (b) Trouver une condition nécessaire suffisante sur α pour que Φ soit un produit scalaire.
- **14.** Soit $n \ge 3$, $E = \mathcal{M}_{n,1}(\mathbb{R})$, A et B deux vecteurs colonnes dans E. Soit $M = A^t B + B^t A$

(Centrale 2014)

- 1. Justifier que M est diagonalisable.
- 2. Déterminer rg(M) en fonction de A et B.
- 3. Déterminer le spectre de M et décrire les sous-espaces propres associés.
- 15. Prouver l'équivalence :

(M est une matrice carré d'ordre n symétrique avec des valeurs propres strictement positives) si et seulement si (il existe un produit scalaire tel que pour tout entier i et j on ait $M(i,j) = \langle e_i \mid e_i \rangle$)

16. On considère l'application $\varphi: \mathbb{R}_n[X] \to \mathbb{R}$ $P \mapsto \int_{-1}^1 \frac{P(t)}{1+t^2} \, \mathrm{d}t$

(Mines 2014)

$$P \mapsto \int_{-1}^{1} \frac{P(t)}{1+t^2} dt$$

1. Soit (x_0, x_1, \dots, x_n) une famille de n+1 éléments distincts deux à deux de \mathbb{R} .

Montrer qu'il existe une famille $(\lambda_0, \ldots, \lambda_n)$ telle que :

$$\forall P \in \mathbb{R}_n[X], \ \varphi(P) = \sum_{i=0}^n \lambda_i P(x_i)$$

- 2. Donner un moyen de calculer les λ_i .
- 17. Déterminer les $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tel que $\begin{cases} x_1 + \ldots + x_n &= n \\ x_1^2 + \ldots + x_n^2 &= n \end{cases}$
- 18. Si A est une matrice symétrique réelle positive, c'est-à-dire si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tX.A.X \geqslant 0$, montrer l'existence d'une unique matrice symétrique positive H telle que $H^2 = A$ (H est appelée une racine carrée de A).
- **19.** Montrer que $\varphi: (P,Q) \longmapsto \int_{-1}^{1} \sqrt{\frac{1-t}{1+t}} P(t)Q(t) dt$ définit un produit scalaire sur $E = \mathbb{R}_n[X]$.

Prouver que $u: P \longmapsto (X^2 - 1)P'' + (2X + 1)P'$ est un endomorphisme symétrique de $(\mathbb{R}_n[X], \varphi)$.

20. 1. Soit $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n$ des réels positifs. Montrer que

$$\left(\sum_{k=1}^n a_k b_k c_k\right)^2 \leqslant \left(\sum_{k=1}^n a_k^2 c_k\right) \left(\sum_{k=1}^n b_k^2 c_k\right)$$

2. Soit $f:[0,1]\to\mathbb{R}$ de classe \mathcal{C}^1 et telle que f(0)=0. Montrer que pour tout x de [0,1], on a :

$$f^2(x) \leqslant x \left(\int_0^1 (f'(t))^2 \, \mathrm{d}t \right).$$

- 3. Soit $(x_1, x_2, \dots, x_n) \in (\mathbb{R}_+^*)^n$ tel que : $\sum_{i=1}^n x_i = 1$. Montrer que : $\sum_{i=1}^n \frac{1}{x_i} \geqslant n^2$. Quels sont les cas d'égalité?
- **21.** On munit $\mathcal{M}_2(\mathbb{R})$ du produit scalaire $\langle M, N \rangle = \operatorname{tr}({}^t M N)$.
 - 1. Montrer que $F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \right\}$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
 - 2. Déterminer une base orthonormée de F^{\perp} pour $\langle .,. \rangle$.
 - 3. Calculer la projection orthogonale de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur $F^{\perp}.$
- **22.** Déterminer $\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (\sqrt{t} at b)^2 dt$.
- ${\bf 23.}$ Déterminer la matrice de la symétrie orthogonale par rapport au plan d'équation :
 - 1. x + 2y 3z = 0
 - 2. $y = x \tan \theta$; où $\theta \in]0, \frac{\pi}{2}[$.
- **24.** Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la rotation d'axe D d'équation $\begin{cases} x-y+z=0\\ x+y+z=0 \end{cases}$ qui transforme \vec{j} en $\frac{1}{\sqrt{2}}(\vec{i}+\vec{k})$.
- **25.** Soit E un espace vectoriel euclidien orienté de dimension 3. Démontrer que $\forall (\vec{u}, \vec{v}, \vec{w}) \in E^3, \ \vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u}.\vec{w})\vec{v} (\vec{u}.\vec{v})\vec{w}$.
- **26.** Reconnaître l'endomorphisme de \mathbb{R}^2 de matrice $A = \frac{1}{13} \begin{pmatrix} 12 & 5 \\ 5 & -12 \end{pmatrix}$.
- 27. Caractériser géométriquement les endomorphismes f et g de \mathbb{R}^3 de matrices :

$$A = \frac{1}{7} \begin{pmatrix} 2 & 3 & 6 \\ 3 & -6 & 2 \\ 6 & 2 & -3 \end{pmatrix} \qquad \text{et} \qquad B = \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{pmatrix}$$

- **28.** Soit $E = \mathcal{M}_n(\mathbb{R})$, muni du produit scalaire $\langle A, B \rangle = \operatorname{tr}({}^t\!AB)$. Soit $M \in \mathcal{M}_n(\mathbb{R})$ fixé, on pose $\Phi_M : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$, $A \mapsto M^t\!AM$. Montrer que Φ_M est un endomorphisme symétrique de E.
- **29.** Soit a, b, c trois réels et la matrice $S(a, b, c) = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$
 - 1. Montrer que $\det(S(a,b,c)) = -(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$.
 - 2. Montrer que $\vec{u}=(1,1,1)$ est un vecteur propre de S(a,b,c) dont on déterminera la valeur propre associée.
 - 3. Montrer que les autres valeurs propres sont les racines carrées ω et $-\omega$ d'un réel α que l'on précisera en fonction de a, b et c. Déterminer une équation du plan $E_{\omega} + E_{-\omega}$.
 - 4. Trouver des conditions sur a,b,c pour que $S(a,b,c)\in O(3)$. Quelle est la nature de l'endomorphisme associé?