FEUILLE D'EXERCICES SUR LES ESPACES VECTORIELS NORMÉS.

- 1. Montrer que l'on définit une norme sur \mathbb{R}^2 par : $N((x,y)) = \sup_{t \in \mathbb{R}} \frac{|x+ty|}{1+t^2}$. Déterminer et dessiner la sphère unité.
- **2.** Soit $p \in \mathbb{N}^*$, $(g_1, ..., g_p)$ des applications continues de [0, 1] dans \mathbb{R} . et l'application

$$N: \begin{array}{ccc} \mathbb{R}^p & \longrightarrow & \mathbb{R} \\ N: & (x_1, ..., x_p) & \longmapsto & \int_0^1 \left| \sum_{k=1}^p x_k \, g_k(t) \right| \, \mathrm{d}t \end{array}$$

Trouver une condition nécessaire et suffisante sur $(g_1,...,g_p)$ pour que N soit une norme sur \mathbb{R}^p .

- 3. Soit l'application N définit de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{R} qui à toute matrice A associe le maximum des modules de ses valeurs propres. L'application N définit-elle une norme sur $\mathcal{M}_n(\mathbb{C})$?
- **4.** Soit X l'ensemble des fonctions $t: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^2 et 2π -périodiques, et Y celui des fonctions $t: \mathbb{R} \to \mathbb{R}$ continues 2π -périodiques.
 - 1. Montrer que $||t||_X = \sup_{x \in \mathbb{R}} |t(x)| + \sup_{x \in \mathbb{R}} |t''(x)|$ définit une norme sur X.
 - 2. Montrer que $||t||_Y = \sup_{x \in \mathbb{R}} |t(x)|$ définit une norme sur Y.
 - 3. Soit $\omega \in \mathbb{R} \setminus \mathbb{Z}$ et $\Phi : \begin{pmatrix} X & \to & Y \\ t & \mapsto & t'' + \omega^2 t \end{pmatrix}$.

Montrer que Φ est une application linéaire continue et injective de $(X, || \cdot ||_X)$ dans $(Y, || \cdot ||_Y)$.

- **5.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $(u_{3n+2})_{n\in\mathbb{N}}$, $(u_{4n+1})_{n\in\mathbb{N}}$ et $(u_{5n+3})_{n\in\mathbb{N}}$ convergent. La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle?
- **6.** Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle et $\forall n\in\mathbb{N}^*, y_n=x_{n-1}+2x_n$. Montrer que $(x_n)_{n\in\mathbb{N}}$ converge si et seulement si $(y_n)_{n\in\mathbb{N}^*}$ converge. Ceci reste-t-il vrai avec $y_n = x_{n-1} + \frac{1}{2}x_n$? (ENSEA 2000)
- 7. Soit $E = \{ f \in \mathcal{C}^1[0,1] \mid f(0) = 0 \}$ et p une fonction continue.

$$N_p(f) = \int_0^1 |f'(t) + p(t)f(t)| dt, \qquad N_\infty(f) = \sup_{t \in [0,1]} |f'(t)|$$

Montrer que N_p et N_∞ sont des normes. Les comparer.

- 8. Soit $E = \mathscr{C}^1([0,1],\mathbb{R}), \ f \in E, \ N_1(f) = \sup_{[0,1]} (|f| + |f'|)$ et $N_2(f) = \sup_{[0,1]} (|f|) + \sup_{[0,1]} (|f'|)$. Montrer que N_1 et N_2 sont deux normes équivalentes.
- **9.** Soit $E = \mathscr{C}^{\infty}([0,1],\mathbb{R})$. Montrer que l'on définit des normes N_1, N_2, \ldots par : $N_1(f) = |f(0)| + ||f'||_{\infty}$, $N_2(f) = |f(0)| + |f'(0)| + ||f''||_{\infty}, \dots$ Comparer ces normes deux à deux.

10. Soit F un fermé d'un espace vectoriel normé E.

Montrer que $d_F: \begin{pmatrix} E & \to & \mathbb{R}^+ \\ x & \mapsto & d(x,F) = \inf \big\{ \|x-y\| \,,\, y \in F \big\} \big)$ est 1-lipschitzienne.

Montrer que l'application $F \mapsto d_F$ est injective (sur l'ensemble des fermés de E).

- 11. Soit A une partie non vide de E et $f:A\to\mathbb{R}$ k-lipschitzienne.
 - Justifier la définition de $g:\begin{pmatrix} E & \to & \mathbb{R} \\ x & \mapsto & g(x) = \sup_{t \in A} \{f(t) k\|x t\|\} \end{pmatrix}$
 - Vérifier que g prolonge f et que g est aussi k-lipschitzienne
- 12. Étudier les domaines de définition, la continuité et les limites en (0,0) des fonctions suivantes :

$$\frac{x^3}{x^2 + y^2} \qquad \frac{x + y}{x^2 + y^2} \qquad \frac{x^2 \cdot y}{x^2 + y^2} \qquad \frac{\sin(x + y)}{x^2 + y^2} \qquad \frac{x + y^2}{x^3 + y^4} \qquad \frac{\sin(\frac{1}{x}) \cdot y^2}{x^2 + y^4}$$

- 13. Soit A une partie convexe non vide d'un espace vectoriel normé E. Montrer que la fonction $\begin{pmatrix} E & \to & \mathbb{R} \\ x & \mapsto & d(x,A) \end{pmatrix}$ est convexe.
- 14. Pour toute partie bornée non vide A, on appelle diamètre de A la borne supérieure de

$$\{||y - x|| / (x, y) \in A^2\}$$

Montrer que A et \overline{A} ont même diamètre.

Qu'en est-il pour les diamètres de A et de A?

- 15. Soit $\mathcal C$ l'espace vectoriel des suites convergentes à valeurs dans E un espace vectoriel normé. $\mathcal C$ est Soit \mathcal{C} l'espace vectoriel des suites convergences à valeur $L: \begin{pmatrix} \mathcal{C} & \to & E \\ (x_n)_{n \in \mathbb{N}} & \mapsto & \lim_{n \to \infty} x_n \end{pmatrix}$ est une application linéaire continue. Montrer que L est une fonction lipschitzienne et donner le meilleur coefficient a tel que $\forall x \in \mathscr{C}, \ \|L(x)\| \leqslant a \ \|x\|_{\infty}.$
- 16. Étudier le caractère fermé, ouvert et borné des parties de \mathbb{R}^2 suivantes et en donner une représentation :
 - 1. $A = \{(x, y) \in \mathbb{R}^2, 1 < |x| < 2\}.$
 - 2. $B = \{(x, y) \in \mathbb{R}^2, |x + y| \le 1 \text{ et } |x y| \le 1\}$
 - 3. $C = \{(x, y) \in \mathbb{R}^2, (x-1)^2 + (y-2)^2 < 4\}$
 - 4. $D = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0, \text{ et } x + y \le 1\}$
- 17. Soit E et F deux espaces vectoriels normés sur \mathbb{R} et soit $f: E \to F$ qui vérifie :

$$\forall (x,y) \in E^2, f(x+y) = f(x) + f(y)$$

- 1. Montrer que si f est continue en 0_E alors f est linéaire.
- 2. Même question en supposant que f est bornée sur $B_F(0_E, 1)$.
- 18. Soit ℓ^{∞} l'espace vectoriel des suites réelles bornées. Pour $x=(x_n)\in\ell^{\infty}$, on pose $N(x)=\sup|x_n|$.

vérifier que c'est une norme. On considère $\Delta:\begin{pmatrix}\ell^\infty & \to & \ell^\infty \\ x=(x_n) & \mapsto & y=(y_n)\end{pmatrix}$ avec $\forall n\in\mathbb{N},\ y_n,=x_{n+1}-x_n.$ Montrer que Δ est un endomorphisme continu de ℓ^∞ . Montrer que Δ est une fonction lipschitzienne et

trouver le meilleur coefficient a tel que $\forall x \in \ell^{\infty}$, $N(\Delta(x)) \leq a N(x)$.

- 19. On pose $f_n(x) = -1 + \sum_{k=1}^n kx^k$. Montrer que f_n possède une unique racine u_n dans [0,1]. Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante, puis déterminer sa limite.
- **20.** Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$ muni de la norme N_{∞} .
 - 1. Montrer que $\varphi:\begin{pmatrix}E&\to&\mathbb{R}\\f&\mapsto&f'(0)\end{pmatrix}$ est une forme linéaire non continue,
 - 2. Vérifier que $\varphi^{-1}(\{0\})$ est non fermé.
- 21. Soit F un sous-espace vectoriel de dimension finie d'un espace vectoriel de dimension finie E. F distinct $\mathrm{de}\;E.$
 - 1. Montrer que, pour tout x élément de E, il existe x' élément de F tel que ||x-x'||=d(x,F).
 - 2. Montrer qu'il existe x dans $E \setminus F$ tel que ||x|| = d(x, F)
- **22.** Soit A et B deux parties non vides de E un \mathbb{R} -espace vectoriel normé de dimension finie, fermées et disjointes.

Montrer que si A est une partie fermée bornée, alors d(A, B) > 0

Donner un exemple dans \mathbb{R} , puis dans \mathbb{R}^2 où d(A,B)=0

23. Soit E un espace vectoriel de dimension finie, K une partie fermée bornée de $E, f: K \to K$ telle que : $\forall (x,y) \in K^2, x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||.$ Montrer que f a un point fixe unique.

24. Soit A une partie fermée bornée de E et $f: E \to E$ continue sur A telle que $f(A) \subset A$. On suppose qu'il existe un point a de E tel que, pour tout $x \in A: x \neq a \Rightarrow \|f(x) - a\| < \|x - a\|$. Montrer que a est un élément de A.

On définit la suite $(x_n)_{n\in\mathbb{N}}$ de A par : $x_0\in A$, $x_{n+1}=f(x_n)$. Montrer que $(x_n)_{n\in\mathbb{N}}$ converge vers a. Indication : On admettra le théorème de Bolzano-Weierstrass qui nous dit que toutes suites bornées en dimension finie admet une sous-suite convergente.

- **25.** Soit p un entier plus grand que 2 et $E = \mathcal{M}_p(\mathbb{R})$. On définit $u: M \mapsto M + {}^tM$ et $v: M \mapsto M {}^tM$.
 - 1. On définit $||M|| = \max_{1 \leqslant i,j \leqslant p} |m_{i,j}|$. Donner $|||u||| = \sup_{X \neq 0} \frac{||u(X)||}{||X||}$ et $|||v||| = \sup_{X \neq 0} \frac{||v(X)||}{||X||}$.
 - 2. même question si $||M|| = \max_{1 \le i \le p} \sum_{j=1}^{p} |m_{i,j}|$. (Centrale 2009)
- **26.** Soit $M \in \mathcal{M}_n(\mathbb{C})$ et $C_M = \{PMP^{-1}, P \in \mathcal{GL}_n(\mathbb{C})\}$. Soit $M' \in \overline{C_M}$.
 - 1. Montrer que M et M' ont les mêmes valeurs propres.
 - 2. Trouver les matrices diagonales dans $\overline{C_M}$.
- 27. Vrai ou faux? Justifier vos réponses.

(X 2021)

- 1. Il existe une application f continue surjective de [0,1] dans [0,1[.
- 2. Il existe une application f continue surjective de]0,1[dans [0,1].
- 3. Il existe une application f bijective de]0,1[dans [0,1].
- **28.** On munit \mathbb{R}^n de la norme infinie $\| \|_{\infty}$. Soit $C = \{X \in (\mathbb{R}_+)^n / \|X\|_{\infty} = 1\}$.
 - 1. Montrer que C est un fermé borné.
 - 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ tel que $\forall (i,j) \in [1,n]^2, \ a_{i,j} > 0$.

$$\text{Soit } r: \begin{pmatrix} C & \to & \mathbb{R} \\ v & \mapsto & \max_{i \in [\![1,n]\!]} \left(\frac{v_i}{(Av)_i} \right) \end{pmatrix}.$$

Prouver que r admet un minimum.

- 3. Montrer que ce minimum est non nul.
- **29.** Soit K un fermé borné d'un espace vectoriel normé de dimension finie. (x 2021) Soit $f: K \to K$ telle que $\forall (x,y) \in K^2, \ x \neq y \Rightarrow \|f(y) f(x)\| < \|y x\|$.
 - 1. Existe-t-il $\lambda \in [0,1[$ tel que $\forall (x,y) \in K^2, \|f(y)-f(x)\| \leqslant \lambda \|y-x\|.$ Si ce n'est pas le cas, en donner un contre-exemple.
 - 2. Montrer que f admet un unique point fixe.
- **30.** On considère un \mathbb{R} -espace vectoriel normé (E, || ||) de dimension 2 et une base (e_1, e_2) de E qui vérifie :

$$\forall (\lambda_1, \lambda_2) \in \mathbb{R}^2, \ \|\lambda_1 e_1 + \lambda_2 e_2\| = \||\lambda_1| \ e_1 + |\lambda_2| \ e_2\|$$
 (*

1. Trouver un espace vectoriel normé et une base associée où (*) est vérifiée et un autre espace vectoriel normé et une base associée où (*) n'est pas vérifiée.

On veut montrer que :

(ENS 2021)

$$\forall (\alpha_1, \alpha_2, \beta_1, \beta_2) \in \mathbb{R}^4, \ |\alpha_1| < |\beta_1| \ \text{et} \ |\alpha_2| < |\beta_2| \Rightarrow \|\alpha_1 e_1 + \alpha_2 e_2\| \leqslant \|\beta_1 e_1 + \beta_2 e_2\| \tag{**}$$

Pour λ fixé, on pose $\Phi : \mu \in \mathbb{R} \mapsto \|\mu e_1 + \lambda e_2\|$.

- 2. (a) Montrer que $\forall (\mu, \mu') \in \mathbb{R}^2, \ \Phi\left(\frac{\mu + \mu'}{2}\right) \leqslant \frac{1}{2} \left(\Phi(\mu) + \Phi(\mu')\right).$
 - (b) Montrer que $\forall \alpha \in [0,1], \ \forall (\mu,\mu') \in \mathbb{R}^2, \ \Phi(\alpha \mu + (1-\alpha) \mu') \leqslant \alpha \Phi(\mu) + (1-\alpha) \Phi(\mu'),$ c'est-à-dire Φ est une application convexe.
 - (c) Prouver la croissance de Φ sur \mathbb{R}_+ .
 - (d) En déduire le résultat (**)