FEUILLE D'EXERCICES SUR LES GÉOMÉTRIES AFFINE ET EUCLIDIENNE.

- 1. Soit, dans le plan euclidien P, la courbe d'équation $C: x^2-y^2=1$. Soit $K \in \mathcal{P}$, tel que K n'appartiennent pas à la courbe C et soit D une droite passant par K. On note M_D et N_D , s'il y a lieu, les points d'intersection de D avec la courbe C et on cherche l'ensemble des points I_D tels que I_D soit le milieu de $[M_D, N_D]$.
- **2.** Soit $(\Gamma): xy = 1$. \vec{N} la normale en M rencontre (Γ) en N.
 - 1) Montre que C (le centre de courbure) est le barycentre de M et N affectés de poids constants.
 - $\mathbf{2}$) En déduire une construction géométrique de C

(Centrale 2002)

- 3. Soit la surface paramétrée Σ par $M(u,v)=\left\{ egin{array}{ll} u^2 \\ 2uv \\ 2u+v \end{array} \right.$ dans un repère orthonormé
 - Montrer que Σ est l'union de 2 droites.
 - Donner l'équation du plan tangent en M(1,1).
 - Trouver l'ensemble des points où le plan tangent est parallèle à l'axe ${\cal O}x$
 - La courbe M(u, 2u) est-elle une courbe plane? Dans quel plan?
 - Trouver la projection sur yOz.

(Centrale 2002

- 4. Soit la parabole \mathcal{P} d'équation $y^2 p.x = 0$. (O, \vec{i}, \vec{j}) repère canonique de \mathbb{R}^2 . Soit $M_1 = \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$ un point de la parabole \mathcal{P} . La normale $\vec{N_1}$ en M_1 coupe (\mathcal{P}) en $M_2 = \begin{vmatrix} x_2 \\ y_2 \end{vmatrix}$, la normale $\vec{N_2}$ en M_2 coupe (\mathcal{P}) en $M_3 = \begin{vmatrix} x_3 \\ y_3 \end{vmatrix}$ Quelle est la nature de $\sum \frac{1}{y_n}$
- **5.** Dans le plan euclidien rapporté à un repère orthonormale (O, \vec{i}, \vec{j}) , on considère la droite \mathcal{D} d'équation :

$$\frac{x}{a} + \frac{y}{b} = 1$$

À tout point M du plan, on associe ses images M_0 , M_1 , M_2 dans les réflexions d'axes \mathcal{D} , Ox et Oy respectivement.

Trouver l'ensemble des points M tels que M_0 , M_1 , M_2 soient alignés.

6. Dans le plan euclidien rapporté à un repère orthonormal (O, \vec{i}, \vec{j}) , on donne deux cercles:

$$C_1: (x-2)^2 + y^2 = 4$$
 et $C_2: x^2 + (y-1)^2 = 1$

Trouver une équation cartésienne de l'ensemble des centres des cercles tangents extérieurement à C_1 et C_2 .

7. Soit ABCD un rectangle du plan euclidien. Déterminer l'ensemble \mathcal{L} des points M du plan tels que les cercles circonscrits aux triangles MAB et MBC aient même rayon.