(cachan 2000)

FEUILLE D'EXERCICES SUR DÉRIVATION ET INTÉGRATION.

1. Soit $f_n:[0,1]\to\mathbb{R}$ l'application définie par : $f_n(t)=\frac{2^nt}{1+n2^nt^2}$

Calculer
$$\lim_{n\to\infty} \int_0^1 f_n(t) dt$$
 et $\int_0^1 \lim_{n\to\infty} f_n(t) dt$.
Que concluez-vous sur la convergence uniforme de cette suite?

1. Déterminer une fonction H_n de classe \mathscr{C}^1 telle que :

$$\forall x \leqslant -\frac{1}{n}, \ H_n(x) = 0$$

 $\forall x \geqslant \frac{1}{n}, \ H_n(x) = 1$
 $H_n \text{ est monotone sur } \mathbb{R}.$

$$\forall x \geqslant \frac{1}{n}, \ H_n(x) = 1$$

(donner une expression analytique de H_n)

- 2. Soit f de classe \mathscr{C}^1 telle que $\int_{-\infty}^{+\infty} |f'(x)| dx$ existe Déterminer $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} H'_n(x) f(x) dx$
- 3. Montrer que $(H'_n)_{n\in\mathbb{N}}$ ne converge pas dans $(\mathcal{C}^0(\mathbb{R}), \| \|_{\infty})$.

- **3.** Soit $(a,b) \in \mathbb{R}^2$, a < b et $f \in \mathscr{C}^1([a,b],\mathbb{K})$ où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .
 - 1. Montrer que pour tout $t \in [a, b]$, on a :

$$f(t) = \frac{1}{b-a} \int_{a}^{b} f(x) dx + \int_{a}^{t} \frac{x-a}{b-a} f'(x) dx + \int_{t}^{b} \frac{x-b}{b-a} f'(x) dx$$

2. En déduire :

(1)
$$|f(t)| \le \frac{1}{b-a} \int_a^b |f(x)| \, \mathrm{d}x + \int_a^b |f'(x)| \, \mathrm{d}x$$

(2)
$$\left| f\left(\frac{a+b}{2}\right) \right| \leqslant \frac{1}{b-a} \int_a^b |f(x)| \, \mathrm{d}x + \frac{1}{2} \int_a^b |f'(x)| \, \mathrm{d}x$$

- **4.** Soit $I=[-a,a],\,a\in\mathbb{R}_+^*$ et $f\in\mathscr{C}^2(I,\mathbb{K}),\,(\mathbb{K}=\mathbb{R}\text{ ou }\mathbb{C}).$
 - 1. On pose $M_k = \sup_{x \in I} |f^{(k)}(x)|$, k = 0, 1 ou 2. Montrer que pour tout $x \in I$:

$$|f'(x)| \le \frac{M_0}{a} + \frac{x^2 + a^2}{2a} M_2$$

- 2. I est maintenant un intervalle quelconque. Montrer que si f et f'' sont bornées sur I, il en est de même pour f'. M_0 , M_1, M_2 étant définis comme en 1., montrer que si $I = \mathbb{R}$ alors $M_1 \leqslant \sqrt{2M_0M_2}$
- **5.** Trouver $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) f'\left(\frac{k+1}{n}\right)$ lorsque $f:[0,1]\to\mathbb{R}$ est de classe \mathscr{C}^2 .
- **6.** 1. Décomposer en éléments simples la fraction rationnelle : $u_n(x) = \frac{nx^{n-1}}{x^n-1}$
 - 2. En déduire $\int_0^{2\pi} \frac{\mathrm{d}t}{z e^{it}}, \ z \in \mathbb{C} \setminus \mathbb{U}$
- 7. Soit f une fonction continue par morceaux définie sur [0,1] positive ou nulle, telle que $\int_{1}^{1} f > 0$ et A un polynôme réel tel que $\int_{\hat{a}}^{1} A^{2} f = 0$. Montrer que A est le polynôme nul.
- 8. Soit f une fonction définie continue par morceaux sur [0,1] à valeurs dans $\mathbb{K}=\mathbb{R}$ ou $\mathbb{C},$ calculer : $\lim_{\substack{x \to 0 \\ x > 0}} x \int_x^1 \frac{f(t)}{t^2} \, \mathrm{d}t.$

- 9. Calculer $\lim_{n\to+\infty}\int_0^\pi \frac{\sin t}{1+\cos^2 nt} dt$
- **10.** Montrer que $\sum_{n=0}^{+\infty} \int_0^1 t^n \sin(\pi t) dt = \int_0^{\pi} \frac{\sin x}{x} dx.$
- 11. Calculer $\int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{1+x} + \sqrt{1-x}}.$
- **12.** Étudier suivant la valeur de $k \in \mathbb{R}$ la fonction $f_k : x \mapsto \frac{\sin x}{\sqrt{1 + k^2 2k\cos x}}$. Calculer $\int_0^{\pi} f_k(x) dx$.
- 13. Étudier les fonctions $f(x) = \int_{x}^{2x} \frac{\mathrm{d}t}{\ln t}$ et $g(x) = \int_{x}^{x^{2}} \frac{\mathrm{d}t}{\ln t}$
- **14.** Soit $\varphi : \mathbb{R} \to \mathbb{R}$ et $u : \mathbb{R} \to \mathbb{R}_+$ deux fonctions continues. On suppose l'existence d'un réel A > 0 tel que : $\forall t \geqslant 0, \ |\varphi(t)| \leqslant A + \int_0^t |\varphi(x)| \ u(x) \ dx$. Montrer que : $\forall t \geqslant 0, \ |\varphi(t)| \leqslant A \exp\left(\int_0^t u(x) \ dx\right)$.
- **15.** Montrer que $f: x \mapsto \sum_{n=2}^{+\infty} \frac{(-1)^n}{x+n}$ est définie sur [-1,1] et de classe \mathcal{C}^{∞} sur [-1,1].
- **16.** Soit $\varphi_{\alpha}(t) = \sum_{n=1}^{+\infty} n^{\alpha} e^{-nt}, \ \alpha > 0.$
 - 1. Domaine de définition de φ_{α} . Continuité de φ_{α} ? φ_{α} est-elle C^1 ?
 - 2. Calculer $\lim_{t\to 0^+} t^{\alpha+1} \varphi_{\alpha}(t)$ (Mines 2002)
- 17. Soit $x \in \mathbb{R}$, $\begin{cases} f_0(x) = \sin x \\ f_{n+1}(x) = \int_0^x -2t f_n(t) \, \mathrm{d}t, \ \forall n \in \mathbb{N} \end{cases}$
 - 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ est bien définie. Expliciter f_1 et f_2 .
 - 2. Montrer que $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ f_n(x) = 2(2n-1)f_{n-1}(x) + 4x^2f_{n-2}(x)$.
 - 3. Montrer que :

$$\left[\exists (Q,P) \in \mathbb{R}[X] \, / \, \forall x \in \mathbb{R}, \, P(x). \, \mathrm{sh}(x) + Q(x). \, \mathrm{ch}(x) = 0 \Rightarrow P = Q = 0_{\mathbb{R}[X]}\right]$$

4. Montrer l'existence et l'unicité de (Q_n) et (P_n) dans $(\mathbb{R}[X])^{\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f_n(x) = P_n(x). \operatorname{sh}(x) + Q_n(x). \operatorname{ch}(x)$$

- (a) Expliciter P_0 , Q_0 , P_1 et Q_1 .
- (b) Trouver une relation de récurrence entre les P_k et les Q_k .

(X-Cachan 2007)

18. Soit f_n une fonction définie par $f_n: \left(\begin{array}{cc} [0,1[\rightarrow \mathbb{R} \\ x \mapsto (1-x^n)^{1/n} \end{array}\right)$ et $f_n(1)=0$.

On a également : $u_n = 1 - \int_0^1 f_n(x) dx$.

- 1. Montrer que : f_n est décroissante, concave, symétrique par rapport à la première bissectrice
- 2. Montrer que f_n admet un unique point fixe : $x_n = \left(\frac{1}{2}\right)^{1/n}$.
- 3. Montrer que : $u_n = v_n + 2w_n$ avec $v_n = (1 x_n)^2$ et $w_n = \int_0^{x_n} (1 f_n(x)) dx$.
- 4. Montrer que $\sum v_n$ converge, puis que : $0 \leqslant w_n \leqslant \frac{2}{(n+1)^2}$.
- **19.** Soit la série de fonctions $f(x) = \sum_{n=0}^{+\infty} \sin(a^n x)$ avec $a \in]-1,1[$.

Montrer que la fonction f est de classe \mathscr{C}^{∞} sur \mathbb{R} . Donner l'expression de $f^{(p)}(x)$.

- **20.** Soit l'application f définie par $\begin{cases} f(\frac{p}{q}) = \frac{1}{q^2} \text{ avec } \frac{p}{q} \text{ fraction irréductible, } p \in \mathbb{Z}^*, \ q \in \mathbb{N}^* \\ f(0) = 0 \\ f(x) = 0; \ \forall x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$
 - 1. Soit $x=\frac{p}{q}\in\mathbb{Q}^*\cap[-a,a]$ avec $a\in]0,1[$. Soit q_0 la partie entière de $\frac{1}{a}$. Montrer que $q\geqslant q_0$
 - 2. Montrer que f est continue en 0 et en tout point $x \notin \mathbb{Q}$.
 - 3. Montrer que f est discontinue en tout point x de \mathbb{Q}^* .
 - 4. Montrer que f est dérivable en 0 et calculer f'(0).
- **21.** Soit la fonction ζ définie par $\zeta(x) = \sum_{n \geqslant 1} \frac{1}{n^x}$.
 - 1. Donner le domaine de définition de ζ .
 - 2. Sur quel intervalle y-a-t-il convergence uniforme? Question oral : pourquoi $\left|\frac{1}{n^x}\right|_{\infty}^{[\alpha,+\infty[} = \frac{1}{n^{\alpha}}$?
 - 3. Montrer que la fonction ζ est de classe \mathscr{C}^{∞} sur l'intervalle ouvert $]1,+\infty[$.
 - 4. Déterminer les limites $\lim_{x\to 1^+} \zeta(x)$ et $\lim_{x\to +\infty} \zeta(x)$.
- **22.** Soit la fonction $f_n(x) = \frac{\sin(nx)}{n^2(n+1)}$ et $S(x) = \sum_{n=1}^{+\infty} f_n(x)$ sur $[-\pi, \pi]$.
 - 1. Étudier la convergence simple et uniforme de S(x)? La fonction S est-elle continue?
 - 2. Montrer que $\forall (x,y) \in [-\pi,\pi]^2$, |S(x) S(y)| < |x-y|, pour $x \neq y$.
 - 3. La fonction S est-elle contractante?
- **23.** Soit la suite de terme général $u_n(x) = \frac{n \cdot x}{2^n \cdot x^2 + n}$ pour tout x réel, $f(x) = \sum_{n=0}^{+\infty} u_n(x)$. (Centrale 2010
 - 1. Montrer que f est bien définie sur \mathbb{R} .
 - 2. Y-a-t-il convergence uniforme de $\sum u_n$ sur tout \mathbb{R} ?
 - 3. Quels sont les réels x en lesquels f est dérivable?
 - 4. Trouver un équivalent de f en l'infini.
- **24.** Soit f une fonction de classe \mathscr{C}^2 sur [a,b] à valeurs dans \mathbb{R} telle que f f''=0. Soit l'ensemble Z(f $f')=\{x\in [a,b]\mid ff'(x)=0\}.$ (Centrale 2010)
 - 1. À l'aide de l'étude des variations de ff', montrer que Z(ff') est un intervalle fermé.
 - 2. Soit $Z(f) = \{x \in [a, b] / f(x) = 0\}$. Montrer que Z(f) est un intervalle fermé.
 - 3. Montrer que f est une fonction affine.
- **25.** Soit $f_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(x+1)} \right)$.
 - 1. Convergence simple de la série des f_n sur \mathbb{R}_+ ?
 - 2. Convergence uniforme de la série des f_n sur \mathbb{R}_+ ?
 - 3. Convergence normale de la série des f_n sur \mathbb{R}_+ ?
 - 4. Montrer que f la somme infinie des f_n est continue et dérivable.