FEUILLE D'EXERCICES SUR LES SÉRIES ENTIÈRES.

- 1. Soient $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayons de convergence strictement positifs R et R'. Que peut-on dire du rayon de convergence de $\sum a_n b_n z^n$?
- **2.** Montrer que $\sum a_n z^n$ et $\sum a_n \frac{nz^n}{n^2 + n 2}$ ont même rayon de convergence.
- 3. Soit $\varphi(n)$ le nombre des chiffres dans l'écriture décimale de $n \in \mathbb{N}$. Trouver le rayon de convergence des séries entières : $\sum \varphi(n)z^n$ et $\sum a^{\varphi(n)}z^n$ pour $a \in \mathbb{R}$.
- **4.** Trouver le rayon de convergence et étudier sur le cercle de convergence la série entière $\sum_{n\geq n_0} a_n z^n$, où n_0 est selon le cas 0, 1 ou 2 et où a_n désigne successivement :

$$\int_0^1 t^n e^{-t} dt, \qquad n^{\ln n}, \qquad n^{(-1)^n}, \qquad \arctan n^{\alpha}.$$

5. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ des suites réelles telles que

$$\forall n \in \mathbb{N}, \ a_n > 0; \qquad \lim_{n \to +\infty} \frac{b_n}{a_n} = \ell, \ (\ell \in \mathbb{R})$$

On suppose en outre que la série entière $\sum a_n z^n$ a un rayon de convergence infini.

Montrer qu'il en est de même pour la série entière $\sum b_n z^n$ et que $\lim_{t\to+\infty} \left(\sum_{n=0}^{+\infty} b_n t^n \atop \frac{1}{+\infty} a_n t^n\right) = \ell$.

- **6.** Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle convergente, et a sa limite.
 - a) trouver le rayon de convergence de la série entière $\sum \frac{a_n}{n!} t^n$.
 - b) On pose: $f(t) = \sum_{n=0}^{\infty} \frac{a_n}{n!} t^n$ $(t \in \mathbb{R})$. Calculer $\lim_{t \to +\infty} (e^{-t} f(t))$.
- 7. Pour chacune des séries entières de la variable réelle suivantes, trouver le rayon de convergence et donner une expression aussi simple que possible de la somme:

$$\sum_{n \ge 1} \frac{t^n}{1 + 2 + \ldots + n} \quad \sum_{n \ge 3} \frac{t^n}{n(n-1)(n-2)} \quad \sum \frac{t^{3n}}{(2n)!} \quad \sum \frac{(-1)^n t^n}{(2n+1)!} \quad \sum_{n \ge 1} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right) t^n$$

- 8. Montrer que $f_k(t) = \sum_{n=0}^{+\infty} \frac{n^k t^n}{n!}$, $(k \in \mathbb{N}^*)$, est de la forme $P_k(t).e^t$, où P_k est un polynôme de degré k. Exprimer P_k au moyen de P_{k-1} .
- 9. Soit $f:[0,a[\to\mathbb{R},\ (a>0)]$, une application de classe \mathcal{C}^{∞} telle que $f\geq 0$ et $f^{(k)}\geq 0$ pour tout $k\in\mathbb{N}^{\star}$. Montrer que f coïncide sur [0,a[avec la somme de sa série de Mac-Laurin. Montrer que $t\mapsto \operatorname{tg} t$ est développable en série entière sur $]-\pi/2,\pi/2[$.
- 10. Soit f une fonction de la variable réelle à valeurs complexes, indéfiniment dérivable sur un voisinage de 0. On suppose qu'il existe r > 0, et deux réels k et M tels que

$$\forall t \in [-r, r], \ \forall n \in \mathbb{N} \ \left| f^{(n)}(t) \right| \le Mk^n n!$$

Montrer que f est développable en série entière à l'origine.

- 11. Développer en série entière la fonction $f: x \mapsto \big(\ln(1+x)\big)^2$
- 12. En dire le maximum sur la série $\sum \frac{n+3}{n+2}x^n$.

- 13. Rayon de convergence et somme de la série $\sum \frac{3x^n}{(n+1)!}$.
- **14.** Trouver le rayon de convergence de $\sum \sin\left(n\frac{\pi}{3}\right)x^n$ et calculer la fonction somme.
- 15. Trouver le rayon de convergence et la somme de la série entière $\sum \frac{n}{n+2} x^n$ (Ensi 1999)
- **16.** Développer en série entière au voisinage de $0 \ r \mapsto P(r,t) = \frac{1-r^2}{1+r^2-2r\cos t}$. Calculer pour $h \in \mathbb{Z}$ et r au voisinage de $0 \int_0^{2\pi} P(r,t-\theta)\cos(h\theta)\mathrm{d}\theta$ et $\int_0^{2\pi} P(r,t-\theta)\sin(h\theta)\mathrm{d}\theta$ (IIE 1999)
- **17.** Soit $f(x) = \sum_{n=0}^{+\infty} e^{-n} \cos(n^2 x)$.
 - 1) Montrer que f est C^{∞} sur \mathbb{R} .
 - 2) Déterminer le rayon de convergence de la série de Taylor de f.
 - 3) f est-elle développable en série entière? (Centrale 2001)
- 18. Soit I_n le nombre d'involutions de \mathbb{N}_n (permutations de carré l'identité).

Montrer que: $\forall n \in \mathbb{N}^*, I_{n+1} = I_n + nI_{n-1}.$

Trouver
$$f(x) = \sum_{n=1}^{+\infty} I_n \frac{x^n}{n!}$$
. En déduire I_n .

- **19.** Soit $f(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{x^{2n+1}}{4n^2 1}$
 - a) ensemble de définition de \mathcal{D} ?
 - b) expression explicite de f sur \mathcal{D}

c) en déduire
$$\sum \frac{(-1)^n}{4n^2 - 1}$$
 (CCP 2001)

- **20.** Rayon de convergence de $\sum d(n)x^n$ où d(n) est le nombre de diviseur de n.
- **21.** On considère la série entière $\sum \frac{(n!)^2}{(2n+1)!} x^n$.
 - 1) Déterminer R le rayon de convergence. On note S(x) la somme de cette série.
 - 2) Calculer $I_{p,q} = \int_0^1 t^p (1-t)^q dt$. En déduire $I_{n,n}$
 - 3) Déterminer $S(x), \forall x \in]-R, R[$. (Ensam 2001)