Feuille d'exercices n°10 de l'option d'informatique.

Dans ce TD, on continue à utiliser les fonctions graphiques développées dans le TD précédent.

- 1. (1) Soit c un nombre complexe, on définit par récurrence une suite de parties de \mathbb{C} par $E_0 = \{0\}$ et pour tout entier n, $E_{n+1} = \{z \in \mathbb{C}/z^2 + c \in E_n\}$.
 - démontrer que $E=\bigcup_{n\in\mathbb{N}}E_n$ est inclus dans le disque de centre 0 et de rayon $\frac{1}{2}+\sqrt{|c|+\frac{1}{4}}$
 - écrire une fonction ayant pour paramètre c et N qui trace $\bigcup_{k=0}^{N} E_k$ (on affectera une couleur différente à chaque E_k)
 - tracer l'ensemble précédent pour N=15 et c=-1.

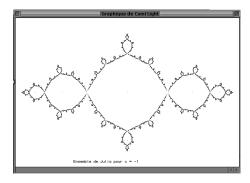


Fig. 1 – Ensemble de Julia pour c = -1 et n = 15

- **2.** Soit c un nombre complexe de module inférieur strict à 1 et, pour chaque $n \in \mathbb{N}$, soit E_n l'ensemble des sommes $\sum_{0 \le k \le n} e_k.c^k$ avec $e_k \in \{0,1\}$ pour tout k.
 - démontrer que la réunion $E = \bigcup_{n \in \mathbb{N}} E_n$ est incluse dans le disque de centre 0 et de rayon $\frac{1}{1 |c|}$.
 - programmer la fonction qui donne la représentation graphique de $E_N = \bigcup_{k=0}^N E_k$ avec comme paramètre N et c (on changera de couleur pour faire apparaître les $E_{k+1} \setminus E_k$).
 - tracer l'ensemble précédent avec N=15 et $c=-1/3+i/\sqrt{3}$.

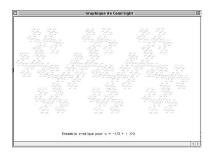


Fig. 2 – Ensemble des z-adique pour N=15 et $c=-1/3+i/\sqrt{3}$

^{1.} Pour cet exercice ainsi que le suivant, on sera amené à choisir une représentation des nombres complexes et à programmer les fonctions d'addition, de soustraction, de multiplication et de racine carrée dans l'ensemble des nombres complexes. On pourra définir un complexe sous la forme type complexe = {re : float; im : float};; La création d'un complexe se fait comme dans l'exemple suivant: let a = {re = 0.3; im = 3.2};; et ensuite les parties réelle et imaginaire de a sont obtenues avec: a.re et a.im.