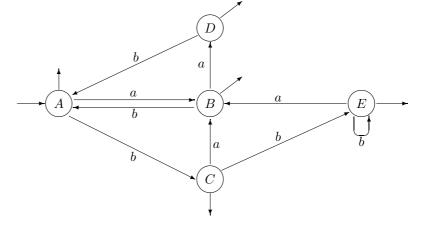
Corrigé TD n°1

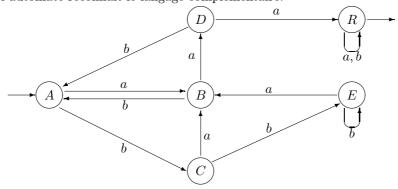
1 Exercice sur les automates

1. Déterminisation

	a	b
$A = \{p, r\}$	$\{q,r\}$	$\{p,q\}$
$B = \{q, r\}$	$\{q\}$	$\{p,r\}$
$C = \{p, q\}$	$\{q,r\}$	$\{p,q,r\}$
$D = \{q\}$		$\{p,r\}$
$E = \{p, q, r\}$	$\{q,r\}$	$\{p,q,r\}$



 $\bf 2$. Complétons l'auromate déterministe précédent en ajoutant un état rebut R et considérons l'automate "complémentaire" qui s'en déduit en rendant terminal l'état R et non terminal les autres états. On sait que ce nouvel automate reconnaît le langage complémentaire.



On constate que lorsqu'on arrive en l'état final R pour la première fois si et seulement si on vient de lire un mot se terminant par aaa. Ainsi le langage complémentaire de L(A) est égal à l'ensemble des mots contenant aaa, d'où la conclusion pour L(A).

- **3.** Posons $E = b^*(aa^*bb^*)^*a^*$ et montrons que $A^* = L(E)$, c'est à dire en fait $A^* \subset \mathcal{L}(E)$. Montrons par récurrence sur la longueur n d'un mot $m \in A^*$ qu'il est dans L(E).
 - . C'est immédiat si n = 0 et n = 1.
 - . Supposons que tous les mots de longueur n-1 sont dans L(E).

Soit u un mot de longueur n.

- * S'il se termine par a, alors il s'écrit u = v.a avec v de longueur n-1.
- D'après l'hypothèse de récurrence, $v \in L(b^*(aa^*bb^*)^*a^*)$, donc u = v.c aussi.
- * S'il se termine par b, alors il s'écrit u = v.b avec v de longueur n-1.
- Si v se termine par a, alors $v \in L(b^*(aa^*bb^*)^*aa^*)$, donc $u \in L(b^*(aa^*bb^*)^*aa^*b) \subset L(b^*(aa^*bb^*)^*aa^*bb^*) \subset L(b^*(aa^*bb^*)^*aa^*bb^*)$ L(E).

Si v se termine par b, alors $v \in L(b^*(aa^*bb^*)^*aa^*bb^*)$, donc $u \in L(b^*(aa^*bb^*)^*aa^*bb^*) \subset L(E)$.

4. Les mots ne contenant pas aaa sont tels que aa^* ne peut prendre que les valeurs ε , a et aa.

Une expression rationnelle du langage $L(A \text{ est donc}: b^*((a+aa)bb^*)^*(\varepsilon+a+aa).$

$$b^*((a+aa)bb^*)^*(\varepsilon+a+aa)$$